Formal Verification of JIT

by Symbolic Execution
Boris Shingarov

ZLABW’ﬁI_Ej
Results Count

High-Level Goal

» Verification of the VM using formal methods

/[ABWARE
Results Count

Previously-tried other approaches

» Correct-by-construction through synthesis

- B.Shingarov: “Synthesis of Target-Agnostic JIT"
— Cordoba, 2014; Cambridge, 2014; Brescia, 2015

- Using full proofs in a dependent-type system

* B.Shingarov: “Writing a Smalltalk VM in Cog” —
Maribor, 2017

/[ABWARE
Results Count

Prohibitive R&D Cost

* VM engineers run away in panic
- Nobody follows

Symbolic Execution

- Well-established techniques, widely used for:
Compiler correctness proofs
Security vulnerability discovery
etc.

« Virtual CPU, works by using an SMT solver for
constraint propagation between states

/[ABWARE
Results Count

Available Analysis Tools

* Alive

- Lopez et al: “Provably Correct Peephole Optimizations
with Alive” — PLDI, 2015

* LLVM optimizations
° angr
- Shoshitaishvili et al: “The Art of War” — IEEE 2016 @
* Wide range of binary analysis techniques

Problem: Self-Modifying Code

* Let’s start with the unproblematic case first

/[ABWARE
Results Count

Symbolic Testing

EAX =5 EAX =)
0x40 inc EAX 0x40 inc EAX
EAX =6 EAX = x+1

ABWARE
Results Count

The Symbolic Execution Engine

0x60631234 orli r3, r3, 0x1234

}

Valgrind VEX IR Lifter

}

—————— IMark(0x100, 4, 0) —
= GET:I32(gpr3)

t2 = GET:132(gpr3)

t1 = 0r32(t0,0x00001234)

PUT(gpr3) = t1

PUT(pc) = 0x00000104

10

Problem: No Symbolic Binaries!

LoadIMM32(x)

}

JIT:
loadConstant(..., int32_t v, Register *trgReg,.) {
int32_t hi = getHighBits(v);
int32_t lo = getlLowBits(v);

generateTrglImmInstruction(OpCode::1is, trgReg, hi);
generateTrgl1Src1ImmInstruction(OpCode::ori, trgReg, trgReg, lo);

}

0x3c60XXXX 0x6063XXXX
addis r3, r0, x[31:16]1 ori r3, r3, x[15:0] / ABWARE

11

Problem: No Symbolic Binaries!

0X3cB0XXXX Ox6063XXXX
addis r3, r0, x[31:16]1 ori r3, r3, x[15:0]

l

Valgrind VEX IR Lifter

l

12

Solution: Write new Lifter

(Digression: my binutils-in-Smalltalk are synthesized from a formal
processor description given in a PDL)

* Augment the PDL

* IR templates

« Just like Valgrind IR, but can contain computer
algebra

ABWARE
Results Count

13

DEMO

ZLABW;EEE
Results Count

14

Useful Results

Work-in-Progress

Working proof of concept

Simple PowerPC and RISC-V code

Practical reasons: no support for RISC-V in angr

Shingarov—Vrany: “Status of Dynamic Language
Runtimes on RISC-V" — RISC-V Workshop

Useful in determining correctness of OMR RISC-V backend

/[ABWARE
Results Count

15

Future work

Synthesize the DSL
* by symbolic execution of RISC-V Spike

Superoptimize

What to vet a realistic JIT against?
Polymorphic Inline Cache
Equivalence vs Refinement

Seed a Verified VM Community

/[ABWARE
Results Count

https://github.com/shingarov/
petrich/tree/machine-arithmetic

ZLABW;EED
Results Count

