
Formal Verification of JIT by Symbolic Execution

Boris Shingarov
LabWare

Ottawa, Canada

Abstract

This work-in-progress report presents ongoing experiments
relating to formal verification of JIT compilers for language
VMs. The native CPU code of the VM — which consists of
statically-known code and variable output of the JIT — is
executed in a symbolic simulation engine. This simulation
yields identities that hold over the total range of inputs (or
disproves them by providing a counterexample).
One obstacle we had to overcome, is executing CPU code

which is itself symbolic, i.e. given as formulae over input
variables. To solve this problem, we designed a new ISA-
agnostic translator from ISA-specific binary machine lan-
guage into an intermediate language which can be directly
simulated by the symbolic engine.

CCS Concepts • Software and its engineering → Vir-

tual machines; Formal software verification;

Keywords Virtual Machine, Formal Compiler Verification,
Symbolic Execution

ACM Reference Format:

Boris Shingarov. 2019. Formal Verification of JIT by Symbolic Ex-

ecution. In Proceedings of ACM SIGPLAN International Workshop

on Virtual Machines andIntermediate Languages (VMIL’19). ACM,

New York, NY, USA, 5 pages.

1 Introduction

Traditionally, software developers validate their software to
ensure absence of programming errors using the approach
called testing. In a test, we execute the software program
giving it a test vector as input, and observe its behavior. If
the program behaves correctly on each test vector we test it
with, we deem that it appears to work. Unfortunately, testing
says nothing about those inputs that are not in the set of the
tested vectors, leaving us with the problem of latent bugs.
Latent bugs in compilers present an even more difficult

problem. Due to the level of abstraction compilers operate
at, these bugs often hide for longer, are more subtle, may
manifest in a crash only billions of CPU instructions after
the bug’s true cause, and are generally more difficult to iso-
late than bugs in other software.
Approaches to solve this problem by formalizing the com-

piler in a logic suitable formechanical proof, have been tried
for several decades. More recently, large-scale, realistic com-
pilers have benefited from formal proof— for example, Leroy

VMIL’19, October 22, 2019, Athens, Greece

2019.

[8] used the Coq proof assistant [4] to prove CompCert, a
compiler from a subset of C; Lopez et al. [10] use the Z3 SMT
solver [6] to prove correctness of LLVM optimizations.
Dynamic programming languages, such as Smalltalk, Py-

thon, Java etc., rely on a Virtual Machine for runtime exe-
cution. Formalization of VMs has been an active area of re-
search. Barthe et al. [3] use Coq to construct an executable
model of JavaCard. M6 [9] (implemented in ACL2) and
CoqJVM [1] (implemented in Coq) are two formalizations of
the JVM.Despite being executable and rather complete, they
essentially model the JVM specification. Real VMs rely on
architecture-scale optimizations — such as Polymorphic In-
line Caches and Just-in-Time compilation — to achieve prac-
tical performance. In this paper, we describe an experiment
aimed towards automated reasoning about correctness of
these optimizations, using the same mathematical appara-
tus that Lopes et al.’s Alive [10] uses for proving LLVM op-
timizations. We take a tiny bytecoded method parametrized
by unknown input, JIT-compile it and execute the native
CPU code — all in a symbolic execution environment. We
compare the algebraically-variable output from the native
code, to the expected output, and prove that they are equal
for all inputs.
The remainder of the paper is organized as follows. In

Section 2, we cite our sources which served as the starting
point of our present work. Section 3 explains the general
structure of the system, and delineates the contributions of
this paper. In section 4, we illustrate how our method works,
by walking through a simplest-possible example of translat-
ing a single IL instruction. In conclusion, in Section 5 we de-
lineate the results we have obtained using the current proof-
of-concept, from future results we aim at achieving with a
full implementation.

2 Related work

The system we describe in this paper, is a major update to
our previous system, Target-Agnostic JIT [14–16, 18, 19], il-
lustrated in Figure 1. TA-J automatically infers the code gen-
erator (thus aiming at being correct by construction) from
a formal specification of the ISA given in two Processor De-
scription Languages: ArchC [13], a SystemC-based DSL for
architectural modeling; and ACCGen [2], an extension DSL
complementing ArchC by providing a specification for in-
struction semantics and platform ABI in a declarative man-
ner.
TA-J synthesizes a superoptimizer-like compiler backend

by treating ACCGen’s instruction semantics statements as

VMIL’19, October 22, 2019, Athens, Greece Boris Shingarov

e(X,Y) :- e2(X,Y).

e2(X,Z) :- e1(X,Y), e2(Y,Z).

e2(X,X).

e1(X,Y) :- X => Y.

format D1 = “%opcd:6 %rt:5 %ra:5 %d:16:s”;

instr<D1> addi, addis, ...;

addi.set_asm(“addi %r, %r, %exp”, rt, ra, d);

addi.set_decoder(opcd=14);

ArchInfo
struct

defi ne instruction addi semantic (

 (transfer Op1:GPR (+ Op2:GPR Op3:IMM));

) cost 1;

assert(

 transfer(Op1, +(Op2, Op3:IMM)) =>

 addi(Op1,Op2,Op3) :-

 integer(Op3), Op3 < MAXTGTIMM

).

:- e(transfer(gpr(3), 5), J). J = addi(gpr(3), 0, 5).

ArchC ACCGen

Logic Database

Input to compile Emitted code

Figure 1. Target-agnostic JIT synthesis from PDL

symbolic equations in an uninterpreted first-order logic. Said
statements are asserted into a logic database in a form of
Cheng–van Emden–Parker Regular Equational Theory [5],
and executed as a PROLOG program using the RET rewrit-
ing algorithm. TA-J’s use of uninterpreted terms is at the
same time its strength and its weakness, because it is not
clear how to reason about combining effects of instructions
based on structures other than pure composition of terms.
In practice this leads to emitting correct but prohibitively
inefficient code.
Our Verified Linear Smalltalk [17–19] attempts formal proof

of one phase (final machine instruction selection) of a JIT
backend using dependent types. The lessons from VLS —
principally, that we have built a working proof-of-concept
but implementing a production backend requires engineer-
ing effort beyond affordable in practical application — has
motivated our further search.
Our present system reuses several parts of Shoshitaishvili

et al.’s angr library [21]. Initially angr was conceived by
the software security community. It integrates and system-
atizes many modern binary analysis techniques. The aspect
of angr of most interest to us, is code analysis via algebraic
execution of native CPU code by a simulation engine based
on the SMT solver Z3 [6]. The idea is briefly summarized
in Figure 2 1. Let’s start from a basic block2. Angr uses Val-
grind’s “libVEX” — a collection of CPU-specific translators
from binary machine code into “VEX IL”, an intermediate
language specifically designed for program analysis. This
IL is then interpreted by a “VEX Simulation Engine”, result-
ing in a number of “paths” and “states” and constraints be-
tween them. These constraints are used to gain semantic

insight into the behavior of the machine code; one might,
for example, ask questions such as “what input must have
been presented to the program for the execution to branch

1Because our main focus is on proving JITs, we drew Figure 2 to facili-

tate the understanding of the difference between our system and angr by

comparing with Figure 3, and not necessarily to be the most complete rep-

resentation of angr per se.
2Such a block may (or may not) originate, for example, from loading an

executable by angr’s CLE Loader.

into such-and-such path?" We will mostly be interested in
the question: “prove that some P always holds” — or equiv-
alently, that some assertion, usually expressed like

if (x < 0) {

/* can never happen */

die("Bug!");

}

can never take the “then” branch and reach “die()”. To achieve
this, we ask the solver to satisfy the constraints on the “die()”
path, and hope for the “UNSAT” answer.

3 Overall structure and Contributions

Our system is a combination and extension of Target-Agnostic
JIT and angr. The contributions of the present work are:

• a method for producing proofs of properties of self-
modifying code by symbolic execution of algebraically-
variable binary program text;

• a translator from algebraically-variable binary program
text into a VEX-like IL suitable for symbolic execu-
tion;

• a method for automated synthesis of said translator
from a processor description DSL designed for such
synthesis.

The overall structure of our system is illustrated in Fig-
ure 3. We start from some IL input to the JIT compiler; this
input may contain some “unknowns” (algebraic variables).
We run the JIT inside the SimEngine3. The output is some
bytes (the emitted binary) in the JIT’s code cache. Some of
those bytes will be variable (their value will be formulae
over the input IL). Now we want to jump to the emitted
code and run it. The problem is, libVEX will not do because

• it takes non-symbolic contents of instructionmemory,
and therefore cannot translate the JIT’s symbolic out-
put;

• it is unavailable for some ISAs of critical interest (e.g.
for our RISC-V port [20])4.

For these reasons, we replaced the VEX lifter with our
own “LWISEM” lifter. The lifter is synthesized by parsing
the PDL (there is no CPU-specific code). We kept the ArchC-
proper part of the PDL syntax; its parsing results in an object
serving the role of ArchInfo in the angr framework. We
gave up the ACCGen part of the PDL and replaced it with
our LWISEM DSL.

3It must be noted that this translator-execution stage is of illustrative and

experimental nature, as opposed to being an essential characteristic of the

method, as it does not guarantee the correctness of the JIT compiler’s

source: the compiler binary is what GCC happened to have produced. This

can be seen as good or bad, but in any case this matter does not concern

us now.
4Ideally we would like the lifter to work for any arbitrary ISA in a target-

agnostic manner. As it is, libVEX contains e.g. 45342 lines of PowerPC-

specific C code. Even if libVEX were suitable in principle, implementing

that amount of RISC-V-specific code would be a prohibitively large side

project.

Formal Verification of JIT by Symbolic Execution VMIL’19, October 22, 2019, Athens, Greece

31

RT=3opcd=14 RA=3 SI=0x1
0

0x38630001 (addi r3, r3, 0x1)

Valgrind
IL Li! er

------ IMark(0x100, 4, 0) ------

 01 | t0 = GET:I32(gpr3)

 02 | t1 = Add32(t0,0x00000001)

 03 | PUT(gpr3) = t1

 04 | PUT(ip) = 0x104

 05 | t2 = GET:I32(ip)

 NEXT: PUT(cia) = t2; Ijk_Boring

Concrete binary

VEX IL

SimEngine gpr3 = <BV32: χ+1>gpr3 = <BV32: χ>

Input state Output state

Figure 2.One scenario of symbolic execution. A basic block
containing one concrete (non-symbolic) PowerPC instruc-
tion “addi r3, r3, 0x1” is lifted to VEX IL and executed by
angr SimEngine.

LWISEM uses an intermediate instruction set similar to
VEX in all respects except that it allows symbolic machine
code. We had to extend the interface between this instruc-
tion set and the SimEngine, but it did not result in dramatic
modifications to the SimEngine itself.
With this, symbolic-execution analysis of emitted code

can be done as if it were a regular static executable.

4 Proof-of-concept experiments

Weexperimentedwith the native code generators ofModtalk
[7], Bee Smalltalk [12], OpenSmalltalk [11], andOpenJ9/OMR
TestaRossa [22] running on various ISAs. For illustration, in
the following section we consider TestaRossa’s “iconst32”
IL instruction, and its compilation on the (32-bit) PowerPC
ISA, because this is the easiest case to understand.

4.1 One instruction

Let’s consider one IL instruction, iconst32. To verify the
correctness of its JIT translation, we begin by executing the
JIT compiler symbolically. The TestaRossa IL assemblywhich
we start from, is

(method return="Int32"

(block

(ireturn (iconst v))

))

The crux of our approach is to pass an algebraic variable
χ of type “Bit Vector of length 32” as the value of actual
parameter v :
v = <BV32 χ>.

We concentrate on verifying the “Instruction Selection” phase
of the JIT compilation. The compiler dispatches on the
iconst32 TRIL instruction into loadConstant():

loadConstant(..., int32_t v, Register *trgReg,...)

{

int32_t hi = getHighBits(v);

int32_t lo = getLowBits(v);

generateTrg1ImmInstruction(OpCode::lis, trgReg, hi);

generateTrg1Src1ImmInstruction(OpCode::ori, trgReg, trgReg, lo);

}

(These generate*Instruction() functions perform Pow-
erPC binary encoding in a rather trivial way, by OR’ing the
opcode which is the numeric value of an enum, with the
operands — for example, in the case of lis, the enum value
0x3c000000 is OR’d with RT and D).
Simplifying somewhat for the sake of illustration5, let’s

say the JIT code-cache begins from 0x100, and let’s notworry
about the prologue/epilogue code. Essentially, the JIT emits
the

addis r3, r0, <upper half of v>

ori r3, r3, <lower half of v>

pair of instructions at 0x100. Because the OMR TestaRossa
compiler is just a C++ program statically compiled by GCC,
we can execute this translation within the angr simulation
environment — we can give the v argument the value χ .
At the end of the simulated translation, the memory is in

the following state — notice how the four bytes encoding D
and UI are formulae over χ :

31

RS=3opcd=24 RA=3 UI=χ[15:0]
0

0x104
31

RT=3opcd=15 RA=0 D=χ[31:16]
0

0x100

Next, we perform a jump to 0x100. In our experiment, this
jump is conceptual. The important thing about it is that it re-
quires a retranslation of PowerPC code at 0x100 into VEX IL.
We cannot use VEX for this, because that memory contains
algebraically-variable bits. This is the task for our LWISEM
lifter.
The LWISEM lifter processes the CPU instructions in se-

quence. Picking up the first instruction, it passes it to the
DISASM procedure. For our first instruction at 0x100 (be-
ginning of the code cache), addis, DISASM’s argument arg
is the bit vector

<BV32 0x3c60#16 .. χ[31:16]>

DISASM works by adding the predicate
P = (instr.binaryEncoding === arg)

as a constraint to the Z3 solver. Here P is a boolean AST: a
two-operand "equals" node with two children both of which
are bitvector ASTs. Solving this constraint immediately yields

instr = addis

ra = 0

rt = 3

d = <BV16: χ[31:16]>

5loadConstant() in the TestaRossa compiler on PowerPC includes code

to differentiate the case when the 32-bit immediate constant fits in the SI

field of li. It also branches on a “isPicSite” flag which indicates that the code

might need to be patched with a longer constant in the future. We defer the

consideration of such branching until Section 4.2.

VMIL’19, October 22, 2019, Athens, Greece Boris Shingarov

loadConstant(, int32_t v, Register *trgReg,)
 {
 int32_t hi = getHighBits(v);
 int32_t lo = getLowBits(v);
 generateTrg1ImmInstruction(OpCodelis, trgReg, hi);
 generateTrg1Src1ImmInstruction(OpCodeori, trgReg, trgReg, lo);
 }

JIT’s program code

31

RS=3opcd=24 RA=3 UI=χ[15:0]
0

0x104
31

RT=3opcd=15 RA=0 D=χ[31:16]
0

0x100

JIT’s code cache

iconst32(χ)

JIT’s IL
(...VM
frontend...)

Semantic
Dictionary

ArchInfo
struct

ArchC
PDL

LWISEM
PDL

angr
VEX engine

…
gpr3 = <BV32 χ>

LWISEM
IL Li" er

 IMARK(0x100, 4, 0)
PUT(gpr3, Const(<BV32 χ[31:16]0#16>))
PUT(pc, Const(0x104))
 IMARK(0x104, 4, 0)
WrTmp(t0, GET:I32(gpr3))
WrTmp(t1, Or32(RdTmp(t0), Const(<BV32 0#16χ[15:0]>)))
PUT(gpr3, RdTmp(t1))
PUT(pc, Const(0x108))

…
gpr3 = <BV32 ?>

output states[0]

input state

LWISEM IL (algebraic VEX)

Figure 3. Symbolic execution of one JIT-translated VM bytecode

Indeed, Z3 can easily deem all other instructions to result in
P being false for all valuations of χ and of all instruction
operands. For example, adde.binaryEncoding === arg gives

P = (<BV32: 31#6..rt#5..ra#5..rb#5..0x114#11> === <BV32: 0x3c60#16..χ [31:16]>)

which is UNSAT; or in other words,
∀ra, rb, rt, χ .¬P

holds.
Once the lifter knows it is dealing with the addis instruc-

tion, it looks up “addis” in the Semantics Dictionary. This
dictionary is constructed by parsing the LWISEM DSL. The
dictionary’s keys are instructions, and the entries are sim-
ply templates of VEX IL. During a lift, VEX IL objects are in-
stantiated by calling usual constructors from pyVEX library.
In our addis example, the lifted IL is

IMARK(0x100, 4, 0)

PUT(gpr3, Constant(<BV32 χ[31:16] .. 0#16>))

PUT(pc, Constant(0x104))

In a similar manner, the ori is lifted to
IMARK(0x104, 4, 0)

WrTmp(t0, GET:I32(gpr3))

WrTmp(t1, Or32(RdTmp(t0), Constant(<BV32 0#16..χ[15:0]>)))
PUT(gpr3, RdTmp(t1))

PUT(pc, Constant(0x108))

Note how the Constant expressions are parametrized by
AST trees containing variable χ .

Once the LWISEM IL is lifted, simulation begins from
0x100. We go until the end of the basic block and examine
the value in GPR3 at the final state. Due to the simplifica-
tions performed by the solver on the algebraic ASTs, GPR3’s
value is now χ . This is the evidence we are looking for, that
the code emitted by the JIT, behaves correctly. More for-
mally, to compute the proof we ask Z3 to satisfy
¬(finalState.regs.r3 === χ)

Here we are asking to try to find a counterexample which
would invalidate the correctness of our JIT translation. This
results in UNSAT, which is the proof we are looking for (and
Z3 can give us a Gentzen-style proof tree). If there were a
bug — meaning that there is a path through the code for

some input resulting in r3 , χ — the solver would give us
that counterexample, i.e. show us how to trigger the bug.

4.2 Branching

The example in Section 4.1 is trivial in the sense that there
are no branches — both loadConstant() and the generated
code, each consist of one basic block, and we connected
them by an unconditional jump, so this case doesn’t have
any interesting control structures. We can go beyond this
linear case even when staying within our example of single
iconst32 IL instruction. On RISC-V, to load a 32-bit integer
immediate into a register, one splits it into a 24-bit “hi” and a
12-bit “lo”; however, it is not enough to simply concatenate
χ [31 : 12] with χ [11 : 0]. The problem is that there are no
“unsigned integers” on RISC-V, so if χ [11] = 1, whenwe load
“lo” the processor will sign-extend it, effectively subtracting
1 from “hi”. Therefore we need to compensate:

#define RISCV_IMM_BITS 12

uint32_t lo = (uint32_t)value & ~(0xFFFFFFFF << RISCV_IMM_BITS);

uint32_t hi = (uint32_t)value & (0xFFFFFFFF << RISCV_IMM_BITS);

if (lo & (1 << (RISCV_IMM_BITS - 1)))

{

hi += 1 << RISCV_IMM_BITS;

}

generateUTYPE(OpCode::_lui, node, hi, trgReg);

generateITYPE(OpCode::_addiw, node, trgReg, trgReg, lo);

We test for χ [11] = 1 and increment “hi” if needed.
Now our compiler has a conditional branch. The symbolic

execution of loadConstant() diverges onto two “paths”; so
at the time we reach the return from loadConstant(), we
have a “stash” of two unrelated “active states”. In this case,
the SimEngine doesn’t do all the work for us for free. This
is because with the jump,

j 0x100

wehad to pass controlmanually, becausewe had to re-translate
the LWISEM. This piece of simulation functionality needs
to be programmed manually to re-connect the fragments of

Formal Verification of JIT by Symbolic Execution VMIL’19, October 22, 2019, Athens, Greece

the execution paths. Then we can merge the final states into
one with GPR3 looking something like

If β then χ else χ

where β is some complex boolean AST involving a test of
χ [11]; which again simplifies to GPR3 = χ .

5 Conclusions and Future work

Wehave constructed aworking proof of conceptwhich shows
that native-code analysis via symbolic execution can be done
in the presence of self-modification, if we augment the lifter
with the capability to lift from symbolic code.

In this experiment, we arbitrarily selected the properties
to give our system to reason about, looking only for sim-
ple examples. Our next step will be to work with an actual
formal model of a whole intermediate language of a VM.
JIT-translating methods to native code is only one flavor

of self-modification in VMs. We intend to repeat our exper-
iment to watch a Polymorphic Inline Cache patch itself un-
der symbolic execution.
Many aggressive optimizations are based on refinement

in the presence of undefined behavior. We intend to explore
how the techniques in [10] may apply in the JIT context.
Certain critical aspects of the design of a JIT compiler are

dictated by multiprocessing. In this area, correctness is es-
pecially difficult to achieve [22]. Applying our approach to
this problem is an important future direction.

References
[1] Robert Atkey. 2008. CoqJVM: An Executable Specifica-

tion of the Java Virtual Machine Using Dependent Types.

Springer Berlin Heidelberg, Berlin, Heidelberg, 18–32.

h�ps://doi.org/10.1007/978-3-540-68103-8_2

[2] R. Auler, P. C. Centoducatte, and E. Borin. 2012. ACCGen: An Au-

tomatic ArchC Compiler Generator. In 2012 IEEE 24th International

Symposium on Computer Architecture and High Performance Comput-

ing. 278–285.

[3] Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard P. Ser-

pette, and Simão Melo de Sousa. 2001. A Formal Executable

Semantics of the JavaCard Platform. In Proceedings of the 10th

European Symposium on Programming Languages and Sys-

tems (ESOP ’01). Springer-Verlag, London, UK, UK, 302–319.

h�p://dl.acm.org/citation.cfm?id=645395.757559

[4] Y. Bertot and P. Castéran. 2004. Interactive Theorem Proving and Pro-

gram Development. Springer, Berlin Heidelberg.

[5] Mantis H.M. Cheng, Douglas Stott Parker, andM. H. van Emden. 1995.

A Method for Implementing Equational Theories as Logic Programs.

In ICLP.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Ef-

ficient SMT Solver. In Proceedings of the Theory and Prac-

tice of Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems

(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–

340. h�p://dl.acm.org/citation.cfm?id=1792734.1792766

[7] J. Fridstrom, A. Jacques, K. Kilpela, and J. Sarkela. 2015. Testing

Modtalk. In Lecture Notes in Business Information Processing, Agile Pro-

cesses, in Software Engineering, and Extreme Programming — 16th In-

ternational Conference, XP. Helsinki, Finland.

[8] Xavier Leroy. July 2008. Formal Verification of a Realistic Compiler.

Commun. ACM 52, 7 (July 2008), 107–115.

[9] H. Liu and J. S. Moore. 2003. Executable JVM Model for Analytical

Reasoning: A Study. InWorkshop on Interpreters, Virtual Machines and

Emulators. ACM SIGPLAN, San Diego, California, USA.

[10] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John

Regehr. 2015. Provably Correct Peephole Optimizations with Alive.

In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’15). ACM, New York, NY,

USA, 22–32. h�ps://doi.org/10.1145/2737924.2737965

[11] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls.

2018. Two Decades of Smalltalk VM Development: Live VM Devel-

opment Through Simulation Tools. In Proceedings of the 10th ACM

SIGPLAN International Workshop on Virtual Machines and Interme-

diate Languages (VMIL 2018). ACM, New York, NY, USA, 57–66.

h�ps://doi.org/10.1145/3281287.3281295

[12] Javier Pimás, Javier Burroni, and Gerardo Richarte. 2014. Design and

implementation of Bee Smalltalk Runtime. In Proceedings of the Inter-

national Workshop on Smalltalk Technologies (IWST ’14). ACM.

[13] S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. 2004. ArchC:

a systemC-based architecture description language. In 16th Sympo-

sium on Computer Architecture and High Performance Computing.

h�ps://doi.org/10.1109/SBAC-PAD.2004.8

[14] Boris Shingarov. 2014. Modern Problems for the Smalltalk VM. In

International Workshop on Smalltalk Technologies. Cambridge, UK.

[15] Boris Shingarov. 2014. The Synthesis of Target-Agnostic JIT. 8th

Smalltalks — Argentina Conference, Córdoba, Argentina.

[16] Boris Shingarov. 2015. Live Introspection of Target-

Agnostic JIT in Simulation. In Proceedings of the Interna-

tional Workshop on Smalltalk Technologies (IWST ’15). ACM.

h�ps://doi.org/10.1145/2811237.2811295

[17] Boris Shingarov. 2017. Programming a Smalltalk VM in Coq. In

Proceedings of the International Workshop on Smalltalk Technologies

(IWST ’17). ACM.

[18] Boris Shingarov. 2017. Two JIT backends for RISC-V. In 7th RISC-V

Workshop Proceedings.

[19] Boris Shingarov. 2018. Dynamic Language Runtimes on RISC-V. In

8th RISC-V Workshop Proceedings.

[20] Boris Shingarov and Jan Vraný. 2019. Status Update: Dynamic Lan-

guage Runtimes on RISC-V. Week of Open SourceHardware—Zürich,

Switzerland.

[21] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A.

Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vi-

gna. 2016. SOK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In 2016 IEEE Symposium on Security and Pri-

vacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 138–157.

h�ps://doi.org/10.1109/SP.2016.17

[22] Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Mark Stood-

ley. 2006. Experiences with Multi-threading and Dynamic Class

Loading in a Java Just-In-Time Compiler. In Proceedings of the

International Symposium on Code Generation and Optimization

(CGO ’06). IEEE Computer Society, Washington, DC, USA, 87–97.

h�ps://doi.org/10.1109/CGO.2006.16

https://doi.org/10.1007/978-3-540-68103-8_2
http://dl.acm.org/citation.cfm?id=645395.757559
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1109/SBAC-PAD.2004.8
https://doi.org/10.1145/2811237.2811295
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/CGO.2006.16

	Abstract
	1 Introduction
	2 Related work
	3 Overall structure and Contributions
	4 Proof-of-concept experiments
	4.1 One instruction
	4.2 Branching

	5 Conclusions and Future work
	References

