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Abstract

Wedescribe an experimental attempt at veri�cation of Small-
talk VM using mechanized proof. Only the native code gen-
eration part is veri�ed. The generator is developed in the
Coq proof assistant and is largely based on the CompCert
compiler backend. The resulting VM successfully runs the
ANSI test suite on a number of targets with di�erent ISAs.
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1 Introduction

The programming of critical systems, where human life or
critical infrastructure is at stake, necessitates correctness as-
surances of a kind di�erent than what we are used to in
general-purpose programming. The high assurance of such
systems is achieved via formal proof. In particular, the high-
assurance community has formalized several programming
language compilers and runtimes using automatic theorem
provers.
Today, the reasoning methodologies used in the construc-

tion of practical Smalltalk virtual machines, remain com-
pletely informal. No machine-checked proof of a Smalltalk
VM has ever been attempted. This renders Smalltalk unsuit-
able for programming high-assurance software.
In this paper, we describe “Veri�ed Linear Smalltalk” —

an experimental attempt to construct a proof of semantic
preservation for a translation from Smalltalk bytecode to
native machine code in the Coq proof assistant [4] using
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dependent types. The executable translator is automatically
extracted from the proof.
For our experiment, we chose theModtalk dialect of Small-

talk [9, 10] for two reasons:

• the low complexity of the bytecode set a�ords its for-
malization with a manageable amount of e�ort;

• the non-live nature ofModtalk’s “ProgramDe�nition”
allows easy reuse of parts of the CompCert AoT
compiler; JIT compilation would have brought undue
complexity.

Another conscious choice we made at the very beginning
was compilation tomachine code. It would be perhaps easier
to construct a machine-checked Blue-Book-like Smalltalk
interpreter in the style of Myreen and Gordon’s Veri�ed
LISP [23]. However, no realistic Smalltalk implementation
today can omit some sort of Deutsch–Schi�man-style native
compilation [8]. Lest the result be “AVeri�ed Toy Smalltalk”,
we could not avoid native machine code.

Section 2 of the paper rationalizes the boundaries of the
part of Smalltalk we selected to formalize. In Section 3, we
start with a representative example of how unde�ned behav-
ior creeps into a Smalltalk VM, and use it to explain the gist
of the idea how guarantees against such unde�ned behavior
can be built with dependent types. Section 4 describes our
experimental implementation. For illustration we give a few
simple examples of proofs of theorems about tagged oops;
these proofs are real Coq code taken from the actual VLS
code. We explain how transformation from Modtalk byte-
code to CompCert IR is programmed and proved. Section 5
discusses how the verifed (proven) and the unveri�ed parts
of our Smalltalk can be connected together without destroy-
ing the value of the proof. Section 6 presents the outcome
of the experiment. Section 7 compares and relates our proof
with other formalized language implementations. We con-
clude with an outlook towards future work in Section 8.

2 Scope of Veri�cation

The Smalltalk system consists of many parts. Why concen-
trate on the correctness of the VM as the foundation for a
trusted Smalltalk? The answer lies in the nature of proof
as the basis of high-assurance software. Following the argu-
ment of Leroy [14], low-assurance software is validated by
testing: the program is tried on a set of test vectors, and if it
appears to behave as expected in each test, it is deemed ac-
ceptable. In this approach, bugs in core language implemen-
tation are a comparatively minor issue relative to the scope
of the complete system. In contrast, the formal validation
of high-assurance software does not rely on observation of
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behavior. A downside of this approach is that now all levels
of the software stack need to be equally strongly assured,
because one “weak link” invalidates the proof of the whole.
Until recently, compilers were such a weak link. For exam-
ple, to aim understanding of C compiler bugs, Yang et al.
built a test bench generating large sets of test vectors; their
tool discovered 325 previously unknown cases of miscom-
pilation in GCC and LLVM [29]. To address this problem,
Leroy describes the formal certi�cation of CompCert [14–
18], a compiler for a C-like language. Running Yang’s test
on CompCert found zero bugs in the certi�ed backend.
In our view, the problem is larger than just miscompi-

lation (i.e. the compiler silently producing incorrect code).
In more than one mainstream, industrial implementation
of the Smalltalk VM, we have observed incorrect behaviors
which by the logic of the VM’s construction would be attrib-
uted to miscompilation by the underlying C compiler, but
thorough consideration of the ISO C99 standard has shown
that in fact no miscompilation was going on.1 The common
occurrence of this class of bugs in “real” Smalltalk VMs sug-
gests the formalization of the VM as a �rst prerequisite be-
fore a larger-scope formalization can be attempted.
In the experiment being described here, we concentrate

only on the native code generator part of the VM. (This is
simply because we have to start somewhere; the formaliza-
tion of other parts of the VM, such as the garbage collector,
will be the topic of future research).

3 Proving De�ned Behavior

Let’s start with an example: consider some representative
operation found in any Smalltalk VM, such asmethod lookup.
Given objectA and symbol S , we followA’s superclass chain
to �nd the method with signature S ; if we reach the end of
the chain before �nding such method, we e�ect the send of
a “Message Not Understood” (MNU) message toA. In a typi-
cal implementation, we would be passed a pointer pA to the
location of A in the “object heap”; at pre-agreed o�sets at
that location, there would be an “object header”, a pointer
to a “method dictionary array” (MDA), “�rst instance vari-
able pointer”, and so on. Our lookup() function needs to
read the pointer to MDA from the speci�ed o�set from pA,
dereference it, follow the MDA structure in search of sym-
bol S , then possibly dereference the superMDA �eld, etc.
The question to ask ourselves is: what are the guarantees
that all these structures contain valid information, so that
e.g. dereferencing a pointer does not result in a segmenta-
tion fault or other unde�ned behavior? How can I be sure

1One striking example from this author’s personal experience was when

working on HPS — one of the most mature Smalltalk VMs — code for com-

paring IEEE �oats suddenly started breaking after more than two decades

of perfect stability. It turned out the C code in question was relying on re-

�exivity of “==” of �oats. When a == a evaluated to false, it looked like a

C compiler bug, but close study of the ISO C standard reveals that this is

valid bevahior — a nuance that evaded those VM engineers for decades.

that pA points to a valid location in the object heap? that
A.mda indeed points to an MDA?What if S doesn’t point to
a Symbol object?
In today’s industrial VMs, it is not unusual to meet with

assert code like this:

oop lookup(oop A, oop S)

{

...

/* assert that we have a real MDA

* because an unfound bug can destroy

* contents of the MDA field

*/

if (!is_mda_oop(A)) {

Abort();

}

...

}

Can I write a VM in a notation that allows to guarantee,
with mathematical certainty, that such “unfound bugs” can-
not happen at all?
Our answer to this question is based on notating the VM

as a theorem in the formalism of Coq proof assistant. Coq
approaches modularity from the point of view of “plug in-
terfaces” where proof of the preconditions necessary to me-
chanically deduce the correctness of themodule’s execution,
is passed in as an argument. To assert the validity of the
proof is the same as to say the proof term has the correct
type; i.e. that the actual parameter matches the formal pa-
rameter’s type declaration.
To understand this idea more clearly, let’s step away from

lookup() momentarily and consider the trivial example of
natural numbers. In Coq, N is de�ned as an inductive
type,2

Inductive N : Set :=
O : N | Succ : N→ N.

It is easy to provide the usual inductive de�nitions of arith-
metic operations such as “+”, inductively prove properties
such as commutativity of addition, etc. Consider the func-
tion Pred, which is the inverse of Succ. If the argument n is
the successor of somem, then Pred returnsm:

Definition Pred (n : N) : N :=
match n with
| O ⇒????
| Succm ⇒m

end.

But what if n = O? Zero has no predecessor.3 If we con-
sider the domain of Pred to be N, then Pred is a partial func-
tion. Its caller better not call it withn = O ; butwhat if it does,
due to an unfound bug? This is the line with “????” above:

2Note that the constructors O and Succ do not have any “body”.
3Di�erent literature provides di�erent de�nitions of Pred ; some authors

put PredO = O . We stick with our de�nition just for this illustration.
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what shall we do in that case — call Abort()? The crucial
idea is that we can make Pred into a total function by intro-
ducing a second argument of type “n > 0”. When the caller
wants to calculate the predecessor of 42, it calls Pred with
42 and a proof that 42 > 0. The compiler performs this type-
checking statically at compile time. If another caller does
not know n ahead of time, it must nevertheless construct
a proof to pass to Pred in a way that can be type-checked
statically. A caller containing a path attempting to calculate
Pred(0) will refuse to compile.

This mechanism gives us a convenient notation in which
the guarantees of well-de�ned behavior of our lookup()

function can be naturally expressed. For example, we take
the proof that A.mda points to an MDA as one of the ar-
guments. Lookup()’s caller, send(), must pass this proof in.
Accidentally, it happens to not construct it locally from zero
hypotheses but to push this responsibility further up the call
graph, but ultimately there is an inductive proof showing at
which point the MDA was constructed, and at which point
A was constructed and A.mda was �lled with the pointer
to the MDA. In Modtalk this is easier than in a “dynamic”
Smalltalk, because the whole Program De�nition is known
ahead of time. In fact, trying to formalize lookup() leads
one to appreciate some nuances of Modtalk’s de�nition of
MNU not present in other Smalltalk dialects. Of course in
a language like Java, method lookup failure is a runtime er-
ror, whereas in Smalltalk this is a normal operation resulting
in an MNU message. What if there is no method to handle
MNU? There are three cases. You can have a valid program
with no MNU handler. For example, Nano has no sends.4

If the program does contain sends, they are late-bound, so
there is no static guarantee against MNU. Trying to �nd
a proof that the superclass chain terminates at a root, the
proof assistant throws subgoals at the VM programmer dis-
covering edge cases that violate VM integrity in interesting
ways. For example, Smalltalk code can easily construct a cy-
cle of superclasses, as “superclass” is just a regular instance
variable in the class object; or equally easily wreak havoc
in the metaobject protocol. Most VMs will indiscriminately
allow such mutation and then crash when a message send is
attempted. Modtalk’s ObjectWriter may guarantee the con-
sistency of the object memory’s initial state, but we imme-
diately see that e.g. the ability to dynamically update the su-
perclass would break assurances about sends. At the time of
writing, many of these subtleties are short-circuited in VLS
by delegating them over the remote debug interface (see Sec-
tion 5); only the actual generated n-code has been subject to
rigorous proof.

4Nano is an example program coming with the Modtalk distribution. It is

a “smallest” Modtalk program consisting only of main initializer returning

42. It has no classes, message sends, or object behavior.

4 Implementation

Our proof is implemented in Coq, delegating large portions
of code generation to reused parts of Leroy’s CompCert back-
end [14–18]. CompCert compiles to a wide range of target
ISAs (IA32, AMD64, RISC/V, di�erent variants of PowerPC,
di�erent variants of ARM) across variousABI �avours. Comp-
Cert is written in ML and Coq, and contains veri�ed and un-
veri�ed parts. Compilation consists of a number of passes.
In the �rst (unveri�ed ML) pass, source in the “Cminor” lan-
guage is parsed down to an intermediate language “RTL”.
The veri�ed compiler core (written in Coq and extracted
into ML at CompCert’s build time) performs a sequence of
transformations from RTL through a number of intermedi-
ate languages: RTL−→ LTL−→ Linear−→Mach−→ Tar-

get. This last language is an abstract representation of na-
tive machine code; an unveri�ed Target Printer (written in
ML) dumps it into native assembly text.
We plug into this infrastructure, as shown in Figure 1,

by supplying a veri�ed transformation pass from Smalltalk
bytecode to Mach IR, programmed in Coq mimicking the
pattern of other CompCert’s passes.5 Unlike some other
frameworks for abstracting reasoning about instruction sets
such as ArchC / ACCGen [3], CompCert does not have a
uni�ed view of “what a typical processor looks like”. For ex-
ample, CompCert’s formalization of the IA32 ISA de�nes a
separate, explicit abstraction for “addressing mode”, while
its PowerPC counterpart lacks such explicit abstraction. For
this reason, we do not directly interface with late stages in-
volved with the ISA.

4.1 Formalization of OOP tagging

We start by reusing Leroy’s formalization of machine inte-
ger arithmetic.6 Type “int” (machine unsigned) in Comp-
Cert is a record comprising a (mathematical) integer k (a
member of Z) and a proof that it �ts in the machine word
of size w (i.e. that 0 ≤ k < m = 2w ). Leroy proceeds to
construct a bijection between these machine integers and Z
mod m. He gives a Coq proof that this bijection is unique (in
particular, not dependent on the exact proof term of 0 ≤ k <

m = 2w ), followed by Coq proofs of a few basic properties,
including properties of “machine integer arithmetic modulo
m”.

5In our experiments, we attempted both a transformation to Linear and

a transformation toMach, looking to reuse CompCert’s infrastructure for

dealing with ABI details when constructing Foreign Function Interfaces.

For reasons explained in Section 8, this did not result in appreciable bene�t.

This failure was not critical for our experiment, because at the time of this

writing VLS does not attempt FFI. For clarity, we are omitting Linear from

Figure 1 and from discussion.
6In standard VM engineering practice today, reasoning about the word size,

over�ow, etc, is at best written in comments but more commonly is per-

formed in the VM engineer’s head. When we speak of formalization, we

mean that the mathematical objects being operating upon by the programs

we write, are proofs of properties of these machine integers and of the VM

code manipulating them.
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Figure 1. Relationship between Modtalk, VLS, Coq, and CompCert
In this �gure, 1 and 2 are parts of Modtalk; 3 and 4 are parts of VLS; 5 and 6 are parts

of CompCert, and 7 is an independent veri�ed layer in the spirit of Piton [22] or part of

the OS.

We build on this by de�ning a representation of Small-
Integers as a tagged machine word. Assume for simplicity
that there is only one tag bit.7 A SmallInteger consists of a
number x ∈ Z and a proof that 0 ≤ x < 2w−1:

Record SI: Type :=
mkSI { intval: Z; intrange: -1 < intval < 2w−1 }.

How do we convert between SI and Z? The integer mean-
ing of a SmallInteger is given simply by projecting the �rst
argument of the constructor:

Definition unsigned (n: SI) : Z := intval n.

In the opposite direction, instead of building a proof of 0 ≤

x < 2w−1 every time we are given an x ∈ Z, consider treat-
ing x , modulo sm (here sm = 2w−1 is the “SmallInteger mod-
ulus”). The following lemma states that 0 ≤ x mod sm <

sm, and so x mod 2w−1 will always �t in a SmallInteger:8

Lemma M:
∀x , 0 ≤ Z_mod_modulus x < sm.

Proof.
intros; unfold Z_mod_modulus.
destruct x .

- generalize small_modulus_pos; omega.
- apply P_mod_two_p_range.
- set (r := P_mod_two_p p (Int.wordsize - 1)).
assert (0 ≤ r < sm) by apply P_mod_two_p_range.
destruct (zeq r 0).
+ generalize small_modulus_pos; omega.
+ omega.

Qed.

7In actual Modtalk — and therefore VLS — there are more than one tag bits.

Also, again for simplicity of illustration, let’s ignore negative integers and

their representation in two’s complement.
8To understand the rest of the text, it is not necessary to understand the

details of this proof which is based on Presburger arithmetic [24]. We

are also omitting details of implementation of auxiliary functions such as

Z_mod_modulus (which computes a mod b).

The universal quanti�cation “∀x” makes this lemma a de-

pendent type. The lemma’s statement is a function taking
an integer x ∈ Z and returning the proposition “0 ≤ x

mod sm < sm” for that particular x , and the proof is a func-
tion constructively computing a proof term whose type is
the above proposition. Now we pass this lemma as the sec-
ond actual parameter to mkSI:

Definition repr (x : Z) : SI :=
mkSI (Z_mod_modulus x ) (Mx ).

The machine representation is then given by the functions
int2si and si2int, going from machine integers to Small-
Integers and back:9

Definition si2int (aSmallInteger: SI) : int :=
Int.or

(Int.shl (Int.repr (unsigned aSmallInteger)) (Int.repr 1))
(Int.repr 1).

Definition int2si (aMachineInt: int) : SI :=
repr (Int.unsigned (Int.shru aMachineInt (Int.repr 1))).

Example EncodeSmallInteger2:
si2int (repr 2) = Int.repr 5.

Proof. re�exivity. Qed.

Example DecodeOop5:
int2si (Int.repr 5) = repr 2.

Proof. re�exivity. Qed.

Note how si2int and int2si are de�ned simply in terms
ofmachine integer arithmetic, whithout any regard to safety

9We are spelling out these de�nitions in full so that the reader can see

what’s going on. Coq’s “Notation” facility a�ords to write such code rather

elegantly, e.g. 1%Nat for the natural number 1, 1%Z for the integer 1, 1%int

for the machine integer 1, 1%SmallInteger for the SmallInteger 1, 1%oop for

SmallInteger zero’s oop, etc. Further, the “Scope” facility allows to switch,

depending on context, between which of these interpretations is meant by

“1” written without a %-quali�er.
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against wrapping around. In fact, the calls to unsigned func-
tion explicitly discard the witdh-�ts guarantee passed in the
argument. An alternative de�nition performs the bit manip-
ulation on the side of Z:

Definition int2si’ (aMachineInt: int) : SI :=
repr (Z.shiftr (Int.unsigned aMachineInt) 1).

Definition si2int’ (aSmallInteger: SI) : int :=
Int.repr ((Z.shiftl (unsigned aSmallInteger) 1) + 1).

Example EncodeSmallInteger2’:
si2int’ (repr 2) = Int.repr 5.

Proof. re�exivity. Qed.

Example DecodeOop5’:
int2si’ (Int.repr 5) = repr 2.

Proof. re�exivity. Qed.

Our last step before we turn to machine instruction se-
quences operating on tagged integers, is extending Leroy’s
de�nition of Value, which is “anything that can go into a
machine word”, to OOP which is any value that can be ei-
ther a SmallInteger or a pointer OOP. We then describe the
semantics of OOP arithmetic by de�ning functions such as

Oop.shru : int → Oop → Oop

as well as

Oop.toSmallInt : int → Oop.

4.2 Tag Manipulation Code

Now we are ready to consider some canned code sequences
for tag stripping and tag introduction, which we could then
literally substitute into machine program text. The really in-
teresting question is, from a proof perspective, how do we
convince ourselves that these instruction sequences do the
right thing? We use CompCert’s “smart constructor” frame-
work. The function unary_constructor_sound takes two
arguments — an instruction constructor and a semantics
over a value type — and returns a proposition stating that
the instruction has the indicated semantics. We de�ne the
synthetic instruction toSmallInt as shl 1 followed by or 1

and then state theorem eval_toSmallInt by applying the
function
(unary_constructor_sound toSmallInt Oop.toSmallInt).

4.3 The CoqCodeWriter

Figure 1 shows how the di�erent components of VLS hold
together. Like in any Smalltalk, Modtalk’s frontend compiler
transforms Smalltalk source code into CompiledMethods
containing bytecoded Intermediate Representation.
Modtalk’s backend is static in the sense that the whole pro-
gram’s IR is analyzed and transformed into executable code
ahead of execution time. The backend is also pluggable in
the sense that it is a framework of APIs which may be im-
plemented by independent plugins. From this perspective,

VLS is one such plugin. All backend implementations per-
form the same three stages of processing:

1. Object Allocation,
2. Code Writing, and
3. Object Initialization.

Stage 1, at which the statically-knownmemory structures
are allocated and their references are stored into a global ta-
ble, is implemented by the “XRef Writer” which is common
to all backend plugins.
Stage 2, in which the actual code generation is performed,

contains most of the dissimilarities between the di�erent
backends. Nevertheless, the general structure of this com-
ponent, which is a Visitor traversing the IR sequences gen-
erated by the Smalltalk compiler, is de�ned in the abstract
class CodeWriter. This class is part of the Modtalk frame-
work, and each plugin must supply a concrete subclass. Typ-
ically, visiting each bytecode would bounce o� the bytecode
back into the code writer which has a separate method per
bytecode class (i.e., #visitPushR:, #visitReturn, etc.) The
class CoqCodeWriter does not implement such methods. It
is on the unveri�ed side of the veri�ed/unveri�ed interface,
and as such, a major design goal was to make this part as
trivial as possible. It is just an empty shell: all it does is dump
the bytecode name and arguments to the stream which con-
nects to the next transformation pass — the veri�ed MTIR-
to-Mach transformation.
At Stage 3, the “initialized data” segment is �lled with

known o�sets and other such information. Its implementa-
tion is straightforward.

4.4 MTIR to Mach

There is only one transformation performed by VLS: from
MTIR to Mach. This transformation is extremely simple:
each MTIR instruction is replaced by a canned Mach in-
struction sequence. The nature of these sequences is not
that much di�erent from canned manually-selected instruc-
tion sequences familiar from many well-known Smalltalk
JITs. The only thingMach does for us is homogenizing out
the idiosyncrasies of the concrete target instruction sets.
The really interesting question is then, how do we con-

vince ourselves that the semantics of MTIR has been pre-
served? Leroy [15, pp.4–5, 16–18] explains various de�ni-
tions of preservation (bisimulation, forward/backward sim-
ulation, preserving safety, etc.) This is critical for a C com-
piler because C programs are allowed multiple behaviors. In
VLS, our life is much easier: Smalltalk bytecode is internally-
deterministic.We are, therefore, interested in a general form
of compiler’s properties: if compiler C compiled the source
program S into the target program T:

C : S → T

then we are interested in some relation P(S,T ).
There are, broadly, two opposite approaches to prove com-

piler correctness. On the one hand, a veri�ed compiler is C
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together with a proof (obtained by analysis of C ahead of
actual act of compilation) that

∀S, (C(S) ↓ T ) → P(S,T )

i.e. that if the compiler produces any code at all, that code
will be correct (here, ↓means “evaluates to”).

On the other hand, a certifying compiler produces a target
program T together with a proof of its correctness:

∀S,C(S) ↓ (T ∗ P(S,T ))

The crux of the di�erence between the two approaches is in
the scope of “∀S”: in the former, it means “we prove once
and for all input programs. . . ”; in the latter, it means “every
time we compile, we give a proof. . . ”
The choice of approach is a matter of convenience (some

transformations are easier to verify and some easier to cer-
tify) and the di�erent compiler passes mix them freely.
Given what we already know in Subsection 4.2, construct-

ing the veri�edMTIR transformation (approach 1) is straight-
forward. MTIR Instruction is an inductive type enumerat-
ing the known kinds of bytecodes, and the transformation
works by case-analysis. Each case is a known instruction
sequence just like we had in Subsection 4.2.
While this transformation seems trivial, the interesting

aspect of it, is that we are forced to provide a formalization
of what each bytecode does. This has not been attempted
in Smalltalk before. Shingarov’s target-agnostic code gener-
ator [27, 28] attempted to disentangle the de�nition of the
bytecode from what the programmer believes the concrete
processor instructions do, but what it manages to achieve
is just to delay the problem by one move: the bytecodes
are still programmed in what the programmer believes the
meaning of the I/O e�ect speci�cation to be.

5 Dealing with Incomplete Software

To write the code generator in one shot without trying out
un�nished parts would be di�cult; to write a whole VM in
one project is impossible. There are, therefore, many parts
of the VM that are outside the scope of our Veri�ed Lin-
ear Smalltalk, such as primitives and memory management.
There are many points of transfer of control between the
veri�ed and the unveri�ed parts of the VM. How doweman-
age this complex relationship without destroying the value
of the proof? In our view, Aarno and Engblom’s virtual plat-
form approach [1] provides a solution. In our experimen-
tal setup, the machine code generated by the veri�ed code
generator, runs under an inner/outer-Smalltalk debugger de-
scribed in [26, 28]. No unveri�ed part of the VM runs on the
target. When an operation not implemented in the veri�ed
part needs to be performed, execution stop at a “surgery
point” due to a processor trap. The Pharo host, which im-
plements the client side of the GDB remote debug protocol,
performs the necessary changes to the state of the target.
This “surgery” is trusted by the target code: the Coq proof

contains assumptions of the correctness of the state when
control returns from the trap.

6 Results

The proof of a full VM such as those used in modern in-
dustrial Smalltalks, would exceed the scope of any reason-
able research project. On the other hand, a VM for some
“toy” subset of Smalltalk would be unconvincing, especially
in light of the state of the art in other formally-veri�ed pro-
gramming languages. As a working compromise, we accept-
ed the de�nition that a Smalltalk implementation is “real-
istic enough” if it runs the ANSI Smalltalk test suite. This
coincides nicely with Modtalk’s de�nition [9, 10].
Another “realness” criterion was that we generate code

for real, not “toy”, processors.
The resulting VM is able to run most of the ANSI test un-

der the supervision of the inner-outer-Smalltalk debugger
[28] on Intel and PowerPC ISAs both in GEM5 simulation
[5] and on real hardware. We excluded “uninteresting” tests
such as File I/O: even if we implemented them, it would be
in the “outer Smalltalk supervisor” and this is not adding
any new knowledge.
On the other hand, highly idiomatic Smalltalk constructs

such as #become: would be interesting to implement and
observe in a veri�ed VM, but they are ignored by the X3J20
ANSI Standard, the ANSI test suite, and the Modtalk system.

The ANSI test, especially when executed within the SUnit
framework, exhibits a lot of nuanced complexity, notably
in its treatment of home contexts, block closures, and ex-
ceptions. Interestingly, (and somewhat contrary to expec-
tation), running these tricky tests presented no nasty sur-
prises. In Modtalk, the operational semantics of the tricky
operations such as non-local return, are unambiguously de-
�ned in terms of straightforwardmanipulation of the virtual
registers #A, #R, #X and �elds in the activation record.
Our implementation cuts asmany corners as possiblewith-

out breaking ANSI. One such cut is the absence of hashing
support in the VM: all hashes are taken to be 0. This, to-
gether with the total absence of any attempt at any sort of
inline caching (a full lookup is performed on every send),
results in so limited performance that any meaningful dis-
cussion of speed or speed measurement must be posponed
until after at least some of these optimizations are imple-
mented.

7 Related Work

Robinson–Voronkov [25] is the most complete reference on
automated reasoning. Kaufmann et al. [13] is the standard
monograph explaining modern automated reasoning tech-
nology in terms of a concrete system, ACL2, making it ac-
cessible for non-proof-theorists. Volume 1 [12] systemati-
cally treats the principles of automated reasoning and de-
scribes the ACL2 theorem prover in detail. Volume 2 [11]
is devoted to practical applications of ACL2. Among them
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are a formalization of IEEE754 �oating-point multiplication
used in validating the RTL design of �oating-point circuits
in AMD’s microprocessors; a study of relationship between
proved correct compiler and the Thompson attack; and nu-
merous other applications.
Bertot–Castéran [4] is the standard reference on Coq.
To the best of our knowledge, to date the possibility of ap-

plication of these or other reasoning systems to the Smalltalk
VM has not been investigated.

Automatic reasoning has been used for automated ver-
i�cation of a number of programming language runtimes
and compilers. We mention only those most relevant to our
work:

Myreen and Gordon [23] provide a mechanical proof for
a LISP interpreter in the HOL4 theorem prover.
Chlipala [7] veri�ed a compiler from a functional language

with references and exceptions to a toy assembly language.
Atkey et al.’s CoqJVM [2] and Liu andMoore’sM6 [19] are

both executable formal models of the Java VM. Neither of
the two address Deutsch–Schi�man-like native execution.
They are written in Coq and ACL2, respectively.

Historically the �rst formal proof of a compiler is [20].
The �rst mechanisation of such proof appeared in [21].

We use Leroy’s CompCert [14–18] as the starting point
for our experiment. CompCert is in�uential (216 citations
according to ACM DL) and has a large community.
Shingarov’s target-agnostic native code generator for

Smalltalk [27, 28] uses logic programming to synthesize a
Smalltalk VM from a formal de�nition of the ISA speci�ed
in a Processor Description Language (PDL), therefore com-
pletely relieving the human programmer from manual rea-
soning about the ISA. The PDL used there, is ArchC / ACC-
Gen [3]. While the actual logical inference of the instruc-
tion sequences is performed using Prolog, the tool parses
the ArchC speci�cation into Smalltalk objects and allows
many interesting kinds of reasoning about the ISA inside
the Pharo environment.
Unlike Shingarov’s target-agnostic tool, Veri�ed Linear

Smalltalk does not reason directly on the ISA, instead fully
relying on CompCert for the �nal stages of machine code
generation. This brings both some advantages and some dis-
advantages. For our purposes, CompCert has very satisfac-
tory ISA support. CompCert’s register allocation is more so-
phisticated than what can be achieved using the PDL ap-
proach. On the other hand, CompCert only goes up to as-
sembly source, trusting the target’s binutils for the as-
semble and link stages, whereas the PDL approach a�ords
rich binutils-type functionality directly inside Pharo. This
seems like a step back to the way Modtalk’s Native backend
performed these operations. Fully relying on CompCert also
means losing a number of avenues for architectural analy-
sis.

R2=0?

push R1

R2 := ...?...

Figure 2. Whether a bytecode sequence pushes onto the
stack in�nitely, is undecidable

8 Future Work

The VLS experiment is currently a work in progress. At the
time of this writing, the most severe limitations of VLS are
caused by its explicit treatment of the stack, which in turn
follows from the stack-oriented nature of our bytecode set.
In order to take advantage of any part of the optimization
frameworks present inmodern compilers such as CompCert,
there needs to be a separation between the stack-manipula-
tion passes of compilation (e.g. register spilling, building of
activation frame) and client program code which should be
operating on pseudo-registers. Fundamental challenges to
automatic reasoning about explicit stack manipulation in-
clude situations such as those illustrated in Figure 2, where
the CompiledMethod is explicitly pushing onto the stack
in a cycle. Another example is building the arguments of a
Windows COM call from the function descriptor. Overcom-
ing this challenge is especially interesting when combined
with the prospect of selective inlining / Strongtalk-style spe-
cialization.
Our veri�ed code generator uses many external technolo-

gies. At this stage of the experiment, the interoperation be-
tween host Pharo, Coq, ML, Menhir, CompCert etc. is ex-
tremely ine�cient and confusing. While it would not make
much sense to rewrite the trusted proof engine in Smalltalk,
it would be interesting to integrate the ML implementation
with Pharo in such a way that the state of the interactive
proof session could be re�ected upon in the GT Inspector
[6], thus opening way to humane assessment of proofs.
We also intend to investigate what signi�cant di�erence

will it make to apply our approach to an image-based Small-
talk with dynamic compilation.
The technologies on which VLS is built, are themselves

currently enjoying rapid advance. We hope to bene�t from
these new results in automatic theorem proving, compiler
veri�cation, and other relevant �elds.
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